Tubing Leak

In this section, we describe the load case Tubing leak, available in Oliasoft WellDesign.

Tubing leak is a burst load case, where the unknown is the internal pressure profile of the casing / tubing.

Note: In this documentation we denote any tubular as casing or tubing. All calculations however encompass any tubular, such as tubings, casings, liners, tie-backs etc.

Summary

This load case is used in connection with production- and injection- operations, and represents a surface pressure on top of a completion fluid due to a tubing leak.

Printable Version

Inputs

The following inputs define the tubing leak load case

  1. The true vertical depth (TVD) along the wellbore as a function of measured depth. Alternatively, the wellbore described by a set of survey stations, with complete information about measured depth and inclination.

  2. The true vertical depth / TVD of

    1. The hanger of the tubing, TVDhanger\text{TVD}_{\text{hanger}}.

    2. The shoe of the tubing, TVDshoe\text{TVD}_{\text{shoe}}.

    3. The packer depth, TVDpacker\text{TVD}_\text{packer}.

    4. The perforation depth, TVDperforation\text{TVD}_{\text{perforation}}.

  3. The pore pressure profile from hanger to influx depth.

  4. The packer fluid density, ρpacker\rho_\text{packer} .

  5. The temperature at the perforation depth, TperforationT_\text{perforation} .

  6. The gas gravity, sggas\text{sg}_\text{gas} .

Calculation

The internal pressure profile of the casing / tubing is calculated as follows

1. Calculate the pore pressure at perforation depth, pp, perforationp_\text{p, perforation}.

2. Calculate the gas density at perforation depth from gas gravity, using Sutton correlations, ρgas, perforation\rho_\text{gas, perforation} .

3. Calculate the pressure at the hanger

phanger=pp, perforationρgas, perforationg(TVDperforationTVDhanger)                                         (1)\begin{equation} p_\text{hanger} = p_\text{p, perforation} - \rho_\text{gas, perforation}\, g\, (\text{TVD}_{\text{perforation}} - \text{TVD}_{\text{hanger}}) \end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (1)

where gg is the gravitational constant.

4. The internal pressure of the tubing depends on where the packer- and perforation- depth are related to each other and the shoe of the tubing. Explicitly, parametrize the tubing by TVD

a) If TVDshoeTVDpackerTVDperforation\text{TVD}_\text{shoe} \leq \text{TVD}_\text{packer} \leq \text{TVD}_\text{perforation} , or if TVDshoeTVDperforationTVDpacker\text{TVD}_\text{shoe} \leq \text{TVD}_\text{perforation} \leq \text{TVD}_\text{packer} , then

pi=phanger+ρpackerg(TVDTVDhanger)                                         (2)\begin{equation} p_i = p_\text{hanger} + \rho_\text{packer}\, g\, (\text{TVD} - \text{TVD}_{\text{hanger}}) \end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (2)

b. If TVDpackerTVDshoeTVDperforation\text{TVD}_\text{packer} \leq \text{TVD}_\text{shoe} \leq \text{TVD}_\text{perforation} , then from hanger to packer

pi=phanger+ρpackerg(TVDTVDhanger),                                                                             (3)\begin{equation} p_i = p_\text{hanger} + \rho_\text{packer}\, g\, (\text{TVD} - \text{TVD}_{\text{hanger}}), \end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (3)

and from packer to shoe

pi=pperforationρgas, perforationg(TVDperforationTVD).                                         (4)\begin{equation} p_i = p_\text{perforation} - \rho_\text{gas, perforation}\, g\, (\text{TVD}_\text{perforation} - \text{TVD}). \end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (4)

c. If TVDpackerTVDperforationTVDshoe\text{TVD}_\text{packer} \leq \text{TVD}_\text{perforation} \leq \text{TVD}_\text{shoe} , then from hanger to packer

pi=phanger+ρpackerg(TVDTVDhanger)                                                                                   (5)\begin{equation} p_i = p_\text{hanger} + \rho_\text{packer}\, g\, (\text{TVD} - \text{TVD}_{\text{hanger}}) \end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (5)

from packer to perforation

pi=pperforationρgas, perforationg(TVDperforationTVD)                                         (6)\begin{equation} p_i = p_\text{perforation} - \rho_\text{gas, perforation}\, g\, (\text{TVD}_\text{perforation} - \text{TVD})\end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (6)

and finally, from perforation to shoe

pi=pperforation+ρpackerg(TVDTVDperforation)                                                                 (7)\begin{equation} p_i = p_\text{perforation} + \rho_\text{packer}\, g\, (\text{TVD} - \text{TVD}_\text{perforation}) \end{equation} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (7)

d. If a=ba = b , then from hanger to perforation

pi=phanger+ρpackerg(TVDTVDhanger)                                                                                (8)p_i = p_\text{hanger} + \rho_\text{packer}\, g\, (\text{TVD} - \text{TVD}_{\text{hanger}}) \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(8)

and from perforation to shoe

pi=pperforation+ρpackerg(TVDTVDperforation).                                                       (9) p_i = p_\text{perforation} + \rho_\text{packer}\, g\, (\text{TVD} - \text{TVD}_\text{perforation}). \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ (9)

e. The last scenario, TVDperforationTVDpackerTVDshoe\text{TVD}_\text{perforation} \leq \text{TVD}_\text{packer} \leq \text{TVD}_\text{shoe} , is physically impossible.

References

[1] Curtis H. Whitson and Michael R. Brule ́. Phase behavior, volume 20 of Henry L. Doherty series. SPE Monograph series, 2000.

[2] Sutton, R.P.: “Compressibility Factors for High-Molecular Weight Reservoir Gases,” paper SPE 14265 presented at the 1985 SPE Annual, Technical Conference and Exhibition, Las Vegas, Nevada, 22–25 September.

Last updated